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Abstract. A general theory of second-order vibronic reduction factors for degenerate elec- 
tronic slates of impurity systems is presented. The analysis is based entirely on symmetry 
arguments. I t  i s  shown that i t  i s  necessary to evaluate only the sums of overlaps (in reduced 
matrix form) between the appropriate oscillator ground state and the symmetry-adapted 
oscillator excitedstates to obtain expressions forthesecond-order reduction factors. These 
expressions are derived for perturbations of the same and mixed symmetries labelled by 
their symmetry properties and cover orbital doublet and triplet states. In  addition, the 
analysis allows for coupling tovibrdtionsofallsymmetries. The Iesultsare illustrated by the 
example of spin-orbit coupling as the perturbation acting within an orbital triplet system 
and between thegroundvibronicstatesand thoseofan inversionleve1ifpresent.Thespecific 
case of a T @ e  system i s  considered in detail using projection operator techniques The 
expressions obtained are compared with the results reported originally by Ham and exact 
agreement i s  found. This serves to illustrate how the method can be applied to other more 
complicated systems. 

1. Introduction 

In asolidormolecule, the coupling between an electronicsystem havingorbitaldegener- 
acy and the vibrations of its surroundings can often have pronounced effects on the 
properties of that electronic system. These effects are often referred to as Jahn-Teller 
(~~)orRennereffects. Manyreviewsexistonthesetopics(see, e.g.,Ham 1972,Englman 
1972, Bates 1978, Perlin and Wagner 1984, Bersuker and Polinger (BP) 1989) which 
cover both a wide range of topics and systems. JT and Renner effects are observed in a 
very wide variety of different experimental situations. 

In spectroscopic studies of such systems, an effective or spin Hamiltonian is fre- 
quently introduced in order to express the effectsof perturbations within the degenerate 
levels in a compact manner. The differences between a simple effective Hamiltonian 
which describes the orbital and spin properties of the system (including perturbations) 
and the more elaborate effective Hamiltonian which describes the same system but with 
the vibronic coupling included can often be expressed in terms of parameters which 
multiply the original electronic perturbations. These parameters are referred to as 
reduction factors. If the perturbation appears in first order, the factors are called ‘first- 
order reduction factors’. If they involve the perturbation in second order (either the 
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same perturbation twice or a product of two different perturbations), they are called 
'second-order reduction factors'. 

In thecase of stronglycoupled JTsystems,somesecond-order termscan have alarger 
intluence than first-order terms. This is because the latter often decrease exponentially 
from unity with increasing coupling strength %,hereas the second-order terms have a 
more complicated dependence on the coupling strength, which although starting from 
zero, often falls away much more slowly than exponentially. It  is very clear, therefore, 
that adetniled theory of suchsecond-orderfactorsisessential in order to model correctly 
specific systems. This was first recognized by Ham (1965) who gave detailed results for 
both first- andsecond-order factorsin theT C3 e J~systems. Later, Ham (1968) discussed 
first-order reduction factors for E 8 e systems. Much of the subsequent work con- 
centrated on studies of the first-order factors only (see. e.g., Ham 1972, OBrien 1964, 
1989, 1990, Lister and O'Brien 1984. Judd 1974). The JT problem when admixtures of 
excited electronic states are included in the ground state has been studied by Vekhter 
(1 973). 

Recently. Bates and D u m  (1989) and Dunn and Bates (1989b) have calculated the 
second-order reduction factors for trigonal T @ t2  and orthorhombic TC3 (e + t2) JT 
systems, respectively, using an analytical approach based on an initial unitary trans- 
formation Collowed by an energy minimization method (Bates er a/ 1987, Dunn 1988, 
Dunn and Bates 1989a). Even more recently. OBrien (1990) has used numerical 
methods to obtain values for the second-order spin-orbit reduction factors for 
T,@ t 2  and T C3 d systems. Her results for the first system have been compared with new 
analytical calculations by Dunn et a/ (1990). 

In  the above calculations of second-order factors, only specific systems and specific 
perturbations (,especially the spin-orbit coupling) have been considered. We describe 
here a general method w8hich is applicable to all systems (e.g. E C3 e, T C3 t2. T C3 (e + 
t2) ,  TC3 d, TC32t2, etc) and also to single- and multiple-mode models. It will be given 
for perturbations of different symmetries which will be labelled generally by their 
irreducible representations (IRS). This means that. for example. stresses can be readily 
incorporated into the formalism. Formulae are also derived for admixtures of an inver- 
sion level into the considered level by the perturbation in second order. 

There has been much interest recently in the role of Berry's phase in IT systems (see, 
e.g., Ham 1987,1990. Chancey and O'Brien 1988). These discussions to date have been 
primarily concerned with inversion splittings and first-order reduction factors. In view 
of the prominence of second-order terms in some important cases, it is possible that 
further information on Berry's phase could be obtained from them. 

Thegeneral theory of second-ordervibronicfactors, particularly those for JTSyStemS. 
is given in detail in section 2. This section also gives the definitions of all the important 
quantities to be used subsequently. The basis of thc method is illustrated in section 3. 
Thevibronicstates which are needed in the calculation are obtained using the analytical 
approach of Dunn and Bates for the T @ e system. Other systems are briefly discussed 
in section 4 while section 5 discusses the results obtained and compares them with other 
published work. 

2. The general theory 

2.1. The Hainiltonian 
Consider a degenerate electronic term of a polyatomic system (e.g. of a molecule or an 
impurity centre in a crystal) which is well separated in energy from all other electronic 
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states of the system. This large energy gap is necessary so that the admixtures of the 
other states into the state under consideration by the electron-vibration (vibronic) 
coupling are small in order to satisfy the criterion for the modified Born-Oppenheimer 
(BO) approximation according tow. Thesubjectof thispaperis theeffect ofthevibronic 
couplingwithin the manifold of these electronically degenerate states. If the terms linear 
in nuclear displacements are non-zero, the JT effect results. In contrast, if the linear 
terms are zero (often owing to restrictions of symmetry) but the bi-linear terms are non- 
zero, the Renner effect arises as discussed by B P .  

will transform according to the component y of the IR T of the appropriate point group. 
(In the following, the IRS will be labelled by T, 2, M, A, etc, and their components by y, 
U ,  ,U, A, etc. respectively. When necessary, different components of the sanie1R will be 
distinguished by the addition of subscripts i and j .  Also T r  and T,will be used to denote 
the IRS or orbital operators from perturbations of differing symmetries.) Using the 
modified BO approximation, we can restrict the calculations to the electronic states 1 Ty) 
and the Hamiltonian can be expressed as a matrix of dimension [r]. The Hamiltonian 
itself can be written as 

Astateofagivendegenerateelectronicterm, which will be written asVr,(r) a ITy), 

X = T(P)  + U(Q) (2.1) 
where T ( P )  is the (diagonal) kinetic energy operator and U(Q) is the potential energy 
operator for the nuclear motion. The kineticenergy operator can be written in the form 

where Pry are the momenta conjugate to the displacements Q,., which transform accord- 
ing to the I R  Ty of the same symmetry group and ?n is the effective mass of a ligand. The 
potential energy operator U ( Q )  acts in the [TI-fold electronic space and takes into 
account the effects of non-adiabatic mixing of the electronic states by the vibrations. 

For the general consideration of second-order vibronic reduction factors, it is 
unnecessary to consider the precise form of U(Q).  However, when studying specific 
examples,it isuseful towritethematrixeleinentsof U(Q)asapowerseriesin Q ,  limiting 
the expansion to second- and some higher-order terms only. The coefficients K~ of the 
totally symmetric combinations 4 E r y ~ r Q  f, are just the elastic constants for the appro- 
priate modes such that the corresponding oscillator frequency or is -. More 
specifically, the terms of low order in the expansion (linear, bi-linear and higher order) 
determine the nature of the vibronic interaction (the JT effect, the Renner effect, etc). 

2.2. The vibronic eigenstares 

Theeigenstates Y &(r, Q) i Iriry) ofthe Hamiltonian (2.1) transformaccordingto the 
same IR of the symmetry group as the related electronic eigenstates. 11 (= n(r))  labels 
the repeated IRS such that the energy increases as n increases, with the lowest-energy 
state havingn = 0. More generally, the eigenstatescan be written in a Clebsch-Gordan 
(CG) convolution form 

I n n )  = C I z u ) l n ( r ) ~ ~ } ( ~ u ~ ~ r y ~  (2.3) 
EOA4 

where Xu, Ty, M label the transformation properties of the appropriate functions. 
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In(T)iU} = X%r)(Q)arefunctionsofthe nuclearcoordinatesobtainedfromthesolutions 
of the Schrodinger equation corresponding to the Hamiltonian (2.1). (ZuAAlry) are 
the CG coefficients containing the appropriate symmetry labels. (The CG coefficients for 
any molecular point group are given, for example, by Koster eta/ (1963).) 

Solutions of the Schrodinger equation corresponding to the Hamiltonian (2.1) are 
generally very difficult to obtain in the case of electronic degeneracy even in apparently 
simple cases. (See BP for specific examples.) However, the calculations do become 
relatively more straightforward if we confine ourselves to the so-called 'simply reducible 
(SR) groups' (Wigner 1965, p87). They possess the important feature that the direct 
productofanytwoIRscontainsnomore thanoneIRofeverytype. Amongthes~groups, 
we have the groupsT,, Oh and 0 (excluding double-valued representations) which are 
the most important in real systems. Furthermore, we shall pick only those basis states 
for which the CG coefficients are real. However. it will be seen that this limitation does 
not influence the generality of our results. 

Using the Wigner-Eckart theorem and also the transformation properties of 
/n(r)AA}* it easily seen that 

V Z Polinger er a1 

{~(~,) .~J. IW',)~Y} = W O A I  IW,)rPAr&,. (2.4) 
where { I  1) -  denotes the reduced matrix element (see, e.g., Griffiths 1962). (Note that 
thedimension of the representation has been included within the reducedmatrixelement 
given above and in all the calculations which follow. However, Griffiths (1962) did not 
include dimension in the reduced matrix elements that he gave.) Moreover, it also 
follows from (2.3) that the orthogonality condition 

C {n(r,)rllm(r,)rl = atlmbr,rj (2.5) 
r 

holds. 
One of the important results of vibronic coupling theory is that the ground vibronic 

states l o r y )  transform in the same way as the electronic states ITy )  from which they 
were derived. They thus have the same degeneracy but their nature is changed from 
'electronic' to 'vibronic'. 

2.3. An external electronic perturbation 

Consider a purely electronic external perturbation V .  In second-order perturbation 
theory, we have the additional Hamiltonian 

% I 2 )  = VG(r)V (2.6) 
where 

(2.7) 

In thisequation. ELo' and E$'] are the energiesof the unperturbed groundvibronic state 
lory) and the excited states InZu), respectively. In principle, all vibronic excitations 
associated with the ground electronic states are included together with the spectrum of 
vibronic states associated with any other electronic terms. However, the following 
discussion is simplified by excluding the other electronic levels from the calculations (see 
Vekhter (1973) for a further discussion of these effects). This is equivalent to assuming 
that the relative energies of the other electronic states are ail large (section 2.1). 
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It follows that in the manifold of electronic basis states ITy). a perturbation of 
symmetry T x  (and component y k )  can be written in the form 

where Crkvx are the electronic matrices which may be identified by the CG coefficients 
from the relation 

( ry ,  lCrkYklr~l) = ( r K Y J y , / T Y ,  ). (2.9) 

In (2.8), wrkyl. are the corresponding coefficients displaying the symmetry Tkyk of the 
perturbation V .  The second-order Hamiltonian XC2) can thus be written in the form 

= C C W;*yXWrlYICrXYkGrCrIYI. (2.10) 
rxYx rnl 

The terms within have symmetry properties identical with those of the operator 
CrkYkCrlY, as they are second-rank tensors. They can therefore be expressed as a sum 
of irreducible tensors in the form 

CrrykG(~)Crlyl = E F M p ( r k  x r,)(rkw,Y,lm). (2.11) 
M!l 

The inverse transformation gives 

This gives 

W2)  depends upon the nuclear coordinates as well as on the electronic mordinates as it 
contains the operator G(T). However, G(T) is a scalar and thus, from a symmetry point 
of view, its omission does not change the transformation properties of each term in the 
sum. Without G(T), each term is purely electronic. The terms with G(T) omitted can 
thus be used as an effective Hamiltonian for the second-order effects if coefficients can 
be introduced to take into account differences between the exact terms given in (2.10) 
and the model Hamiltonian expressed by the same terms with the G(T) excluded. In 
order to do this, the same transformation can be performed for the second-rank tensors 
CrkyrCrlyl to the irreducible tensors F,wp(rk x r,) as carried out above in deriving 
equations (2.11) and (2.13). The result is that for an electronic operator we have 

This equation can be compared with equation (2.12) above. 
Applying the Wigner-Eckart theorem to the matrix elements of 9,,(rk X r,) we 

have 

(orYiPM,,(r, x r,)iOrY,) = (Orll~M(rk x r,)lIOr)(Mmilryi). (2.15) 

It can easily be seen that the expressions are given in terms of the same CG coefficients 
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as the matrix elements of the pure electronic operators FMr(rk x r,) determined by 
(2.14) which are 

V Z Polinger er ai 

(ry,/F,ui,(rk x r,)iry,) = (r ih(rk x r,)iir)(Mpry, i r y i .  

f W r k  x rd = (orii9drk x r o l l o ~ ~ / ~ ~ l i ~ , , , ~ ~ k  x r,)llr). 

(2.16) 

It is convenient here to introduce the second-order vibronic reduction factor which is 
defined as the ratio K!#(rk  x r,) of the two reduced matrix elements. Thus 

(2.17) 

It  automatically follows that 

(orY,i$,,,,,(rk x rlioryi)= wwi-,. x ~ , ) I ( ~ Y ~ I F . , , , ( ~ ~  x rc ) i rY i ) .  (2.18) 

This result enables us to use an effective Hamiltonian to describe second-order con- 
tributions in terms of pure electronic operators FM,(Tk X r,) each of which is multiplied 
by the coefficient KG](T, x r,), These second-order vibronic reduction factors are 
analogous to the first-order reduction factors introduced initially by Ham (1965). The 
above general definitions of second-order vibronic reduction factors reduce to the usual 
second-order JT reduction factors introduced by Ham (1965), Dunn and Bates (1989b), 
O'Brien (1990) and Bates and Dunn (1989) for specific cases. A dctailed comparison 
between the general expressions above and those discussed previously is given below. 

2.4. Gerieral espressions [or second-order redrrction factors 

From the above expressions and after much algebra involving the Wigner coefficients 
and summing over the IRS. we obtain 

(2.19) 

I n  the above, the square brackets [ ] denote the 6rsymbols which are the point group 
analoguesofthe 6jsymbols (Griffiths 1962). Tablesofthe6rsymbolsand their properties 
are given. for example, by Griffiths (1962). Sviridov and Smirnov (1964) and Sviridov 
et a1 (1964, 1966). I n  equation (2.19). we have invoked the notation of a fictitious 
angular momentum operatorj(r) (Sviridovand Smirnov 1964, Sviridovera! 1964,1966) 
for the cubic groups 0. Oh and Td such that j(A,) = 0,j(A2) = 1, j(E) = 2. 
j(T,) = 3 and j(T,) = 4. 

The aboveexpressionsareexactastheydonotdependonanyapproximationin their 
derivation. They apply therefore to all ranges of coupling strengths and to all types of 
vibrational mode. 

The results can be simplified when rk = r, as the sum in (2.7) contains only one I R .  
For example, the effect of spin-orbit coupling is described by rk = r, = T, and that of a 
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Table 1. The symmetries of the 17 second-order reduction factors for orbital triplet States 
derived from the direct product of r, x Ti. 

Symmetry 

r, rk = E r, = T,  ri = T~ 
~ ~ 

E A, t E TI  + T2 Ti + T> 
T, 
T.2  

A ,  + E  + T, t T2 Et T, t T2 
A, + E + T, + T, 

uniaxial stressalongatetragonal [OOl] axis b y r k  = r r  = E. Similarly,for auniaxialstress 
along a trigonal [ I l l ]  axis, rk = r r  = Tz. However, this approximation cannot be used 
for stresses along an orthorhombic [ 1101 axis as cross terms occur for which rk = E and 
rl = T, or vice versa. 

In the simplified case when rk = r l  we have. from section 2.2, that 

where 

(2.22) 

(2.23) 

In general, 17 second-order reduction factors are needed to describe any second-order 
perturbation effect within an electronic TI or T2 state. However, arguments can be 
used to show that some of these factors are always zero. In particular, there are no 
second-order reduction factors in which the direct product Ti. x r, involves either A, 
or A,. For A , ,  this is due to the orthogonality condition (2.4). and for A2 it is because 
the matrices Cr,,, and Crlvr are zero from the selection rules for cubic groups. For 
the same reason. if M equals A2, the matrix elements of the second-order operators 
3 , d T a  x r,) and F,,(T, X r,) are also zero. The symmetries of the reduction factors 
which remain are given in table 1. 

2 .5 .  Spin-or6il coupling as an example 

The effects of spin-orbit coupling for a 2S+'T term in second-order perturbation theory 
can be described by the effective Hamiltonian 

K ~ ~ ~ = A ~ ~ K W L S ? J P ~  (2.24) 

where A is the spin-orbit coupling constant. The second-order orbital operators are 
given by 

.MU 

L?; = VTl(l+ 1) 

LPL = (2/v%)EL 

L &  = 4 ( 1 &  + / J X )  

L ? ) ~  = M i x  

E ;  = .4[31i - /(/ + 1)) 
(2.25) 
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Table 2. The equivalences between the second-order reduction factors defined in (2.24) 
and those of other workers defined by the following Hamiltonians: OBrien (1990) used 

&, = A'[A(f. S) t I B E E ( / ) € ( S )  + &T(I)T(S) t CI(I + I)S(S + I ) ]  

and Bates and Dum (1989, equation (3.8)) used 

Ye,,, = h'[b(/. S) + c (€ ,E$  + €,E.') + d(L, ;S ,  + L,S, + L,,S, , )  
+ d(l  t 1)S(S t I ) ]  

Inlhrabove.€(I) = Eh =1[(3/! - V t  l ) ] , e t c . a n d T ( I ) = ~ L , . w h e r e L , , = I ~ ~ + + l ; l , ,  
etc. 

~~ 

Presenl paper OBrien (1990) Bates and Dunn (1989) 

Kjil 3c . 3e + b 
K p BE k t b  
K \:/ -2A b 

2d t b 

~~ . . , ,  ., ..... "" ....,.... ....,...,,.,,, .,, ,, .,.... , 

. . . ..- .. .. ,., , , , . , ,, , 
K 5'; B T  

where / = 1 describes the orbital T state. The second-order spin operators SR are 
defincd in an identical way to that of the orbital operators. For spin-orbit coupling, 
rk = r, = Ti so that the second-order reduction factors K P  are 

M = A , ,  E, TI andT,. (2.26) 

The relationships between these factors and those used by Bates and Dunn (1989) 
and O'Brien (1990). and defined by their different effective Hamiltonians, are given 
in  table 2. 

The four second-order reduction factors KG' can easily be presented in terms of 
the parameters R A  (= R,,(T,) introduced in (2.23)) as follows: 

K P  = K!$(T, X T I )  

K!.; = 3R,, +  RE + ~ R T ,  + ~ R T ,  

Kf' = -6R,, - 12RE + 9Rrl + 9RTq 

KF; 

KF! = -6RA, + 6RE + 9RT, - ~ R T ,  

OR,, - 6RE + 9RT, - 9RT, 

where 

(2.27) 

(2.28) 
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The overlap integrals (O(T,)r 11 n(A)T} for a given system can be calculated using 
specific models (see section 3) and can also be evaluated in general for certain 
limiting cases. Hence specific expressions for the second-order reduction factors can 
be obtained. 

Some general properties of these second-order reduction factors are evident 
without explicit calculation. For example, in the T63 e JT problem (see, e.g., BP, Bates 
1978) there are no vibronic states of A,  or E symmetry so that R A ,  = R E  = 0. 
Therefore, the above four second-order reduction factors may be expressed in terms 
of the two parameters RT, and RT, only. This is a generalization of the known results 
of Ham (1965), who obtained twb reduction factors by considering linear vibronic 
coupling only. 

2.6. Off-diagonal second-order reduction factors 

In many strongly coupled vibronic systems, there is an inversion (or tunnelling) level 
very close to the ground state. In such cases, certain perturbations can cause significant 
admixtures of these inversion states into the ground states. Such effects can also be 
described by an appropriate second-order reduction factor (O'Brien 1990) which is 
analogous to the corresponding first-order off-diagonal reduction factor (see, e.g., 
Ham 1972, BP). 

This off-diagonal second-order reduction factor can be introduced as the ratio of 
the appropriate reduced matrix elements: 

m(rIrk x r,Iw = (orl/~.drk x ~ f ~ l l o Q ~ / ~ ~ l F d ~ k  x r,)llr) 
=Kord%,Jrk x r,)loQe)/(oryklF~,(Tx x r,)lr$l 

x ( ( w o i r y ,  )/(Mmmiry)). (2.29) 

It can be evaluated in the same way as for the diagonal terms above, with the result 
that 

(2.30) 

where 

K;'(z) = s~(rkAr)s~(r,A~)/(~' l-  E!@) (2.31) 

with the Sn(r, A, Q)  given in (2.21). 
In the case of spin-orbit coupling within a T,  term, we have rk = Ti = T, and 

r = T,. We consider first the T @  (e + tz) problem (see, e.g., BP, Bates ef a1 1987) 
with the coupling to tz  modes dominant so that the trigonal minima lie lowest in 
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energy. This system has an inversion level of A, symmetry, and so equation (2.29) 
is reduced to 

I/ Z Poiinger et ai  

x (fi/?(O(T~)Elln(TdE) - IO(T,)TI I ~ ( T Z ) T J  

+ IO(T,)T2 II4TdTd. (2.32) 

For systems in which the linear coupling to e and t2  modes are approximately equal 
and the bi-linear terms of vibronic coupling push the orthorhombic saddle points into 
becoming the lowest-energy minima, the inversion level is of Tz symmetry (BP, Bates 
er ai 1987) and thus  r = Ti. Substituting this result into equation (2.26) shows that 
the second-order off-diagonal reduction factor is zero. 

3. Applications to T €4 e JT systems 

In order for the general method of calculation of second-order vibronic reduction 
factors outlined above to be applied to real systems, it  is necessary to evaluate the 
overlap integrals {O(r)Elln(r)E}. This means that expressions are needed for the 
oscillator parts of the  vibronic states l n r )  in a symmetry-adapted form. An orthogonal 
set of symmetry-adapted states can be readily obtained for T @ e  JT systems, as we 
show below restricting the calculations to sites of T, symmetry. 

The possible modes of vibration Ty for a T@ e system are the e-typc modes of a 
tetrahedral cluster Q# and Q,. Thus r = E and y = 8, E .  Considering linear coupling 
only, the potential energy operator of equation (2.1) becomes (for a T I  (I = 1) ion): 

U(Q) = bV,(p ,Qo - V'$,Q,) + h&(Q; + Qi) (3.1) 

where V ,  is thc E-type ion-lattice coupling constant and 

p s  = 31; - 2 p e  = -&(E + 11). (3.2) 

in  strong coupling, the potential energy surface of the T@ e JT system contains three 
minima or wells. Vibronic states associated with these wells, classified according to 
their symmetry transformation propertics. can be used to form eigenstates of the 
system as a whole. 

For TBe,  there are no vibronic states of A , .  A2 or E symmetry. Those states 
which transform as T I  and T2 can be written in the form 

/n(r)TIy}= U,ly;B~,€~) (3.3) 

where q is even for r = TI  and odd for r = T:, and n = p + q. The components of 
the I = 1 orbital states are labelled by y, where y = x .  y or z correspond to the wells 
k = 1, 2 and 3, respectively. The label y can also be used for the oscillator states such 
that 0; denotes the presence of p excitations of the @,-type oscillator, etc. For y = z, 
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0" has symmetry 31: - 2, etc; for the other wells, a cyclic rotation of ( x ,  y ,  z )  is needed. 
Thus, in terms of the more usual 8, and E,  oscillators, we have 

e, = - $ez + E, = -h+ie, - 4 ~ ~ .  (3.4) 
The operator U, in (3.3) is given by 

I: Cjk'(b, - b ; ) )  
/ = a r  

(3.5) 

where 

Cy) = - ay) (3.6) 
and where b, and b; are the annihilation and creation operators, respectively, for 
oscillator excitations of symmetry j .  The values of a$' are given by 

a ( k )  = 0 

It is readily seen that the states In(T,)T,} and In(T,)T,} are orthogonal to each other 
whether they belong to the same wells (because the oscillator parts are orthogonal) 
or to different wells (because the orbital states are orthogonal). This contrasts with 
the other orbital triplet systems for which exact orthogonality can only be achieved 
with great difficulty. 

ab7 = VE/hmoi  er ( Y  = X , Y ,  2). (3.7) 

The energies of the states (3.3) are given by 

E ~ ~ , E ~ ~ = - E , + O , + q + l ) h w ,  (3.8) 

Ere = 4 K : / h o E  = Vi/2mw:. (3.9) 

where Ere is the JT energy given by 

The second-order reduction factors may be calculated directly from equation (2.15) 
by fixing yi in the first ground vibronic state and summing over all possible components 
yx  of the excited states and y, of the second ground vibronic state, However, an 
alternative method is to use equations (2.27) and (2.28) involving the reduced oscillator 
overlaps. In states such as /n(T,)E} for example, the E denotes the symmetry of the 
oscillators. 

As the symmetric part of the product e C3 e @ e  . . . (to n factors) contains states 
of symmetry A,,  A, and E only, many of the contributions in (2.28) vanish. To 
calculate the remaining overlaps, it is necessary to rewrite a typical ground state (e.g. 
U,ly;OO)) and an excited state (e.g. U"1y; e;&;)) in terms of symmetry-adapted 
oscillator states. For the ground state, the procedure is straightforward and, dropping 
the orbital component, it is found, for example, that 

(3.10) U ,  IO, 0) = f i I O ) E a  + 410)*z  

with 

IO)Ea = v3[2UZ - U, - U,IlO,O) (3.11) 

and 

IO)& =*[U, + cy + UZ]. (3.12) 

For the excited states, projection operator techniques can be used on the phonon 
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states in an analogous manner to that used by Dunn (1989) for the full vibronic states. 
Thus, for example, 

u ; 1 e $ E f ) = ' d l n ) E  + f l l n ) ~  (3.13) 
where 

I&  = v ' i [ 2 u , I e ~ E ! ) -  u,iew)- uy~e;~y4)] (3.14) 
which has EH symmetry when q is even and E, symmetry when q is odd and where 

In)* = VW, le:e) + u,iq~y4) + u,ie!F~)] (3.15) 
which has A2 symmetry when q is even and A ,  symmetry when q is odd. The 
corresponding state of EB symmetry when q is odd, etc, is 

(3.16) 
It should be noted that the states 10)~. In)A. etc. are nor normalized in the form given 
but that the combinations given in (3.10) and (3.13) are normalized, 

There are only two non-zero overlaps, namely {O(T,)ElIn(T,)E) in R T ,  and 
{O(T,)EI[O(T,)E) in RT?, which may be evaluated from the EO component in each 
case. Typical overlaps are (Bates and Dunn 1989) 

V Z Poiinger et ai 

I& = 4 [ u ,  I e!&) - U, I ep;)]. 

(0,01u;u,Ie$~$) = ( - 3 ~ ) q t ' k ) n  
(3.17) 

where E = -KE/hwE. Substituting these overlaps into (2.27) and noting the need for 
the relevant 6r symbols, we find that 

( O , O ( U : u x I E f E f )  = ( - 3 e p ( - v 3 E ) 9  

R A ,  = R E  = 0 

RT, = -fs(fZ + f 3  (3.18) 

RT: = +h(fi  -fi) 
where 

f! = S t H E ( X )  f = S 2 H E ( 2 X )  (3.19) 
with X = 6@. The overlap S, between the ground-state oscillators in different wells 
is given by 

S, = exp[-6(KE/ttwE)'] (3.20) 
and 

(3.21) 

These results are exactly the same as those found originally by Ham (1965) 

4. Calculations for other systems 

For systems other than T C3 e, it has so far not been possible to obtain an exact set of 
orthogonal excited states by analytical means. However, Dunn (1989) and Hallam et 
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al(l991) use projection operator techniques to construct analytically a set of symmetry- 
adapted excited states for T @ t2 and T @  (e + t2) JT systems, respectively, which are 
nearly orthogonal in moderate and strong coupling. As such states have the correct 
symmetry properties, they can be used as approximate basis sets for the generalized 
reduction factor calculations. 

The general method described in section 2 has also been used for the T 8 t, system 
(Dunn er a1 1990) as symmetry-adapted states exist ( D u m  1989) hut starting from the 
earlier result (i.e. from equation (2.15)). In this case, the excited states are written 
in the form I",(/, m, n))  where I ,  m, n give the number of t 2  oscillator excitations of 
symmetry y r ,  z x ,  xy, respectively. 

If these states are used instead to evaluate the overlap integrals contained in (2.29), 
exactly the same calculations need to be carried out as  those undertaken by Dunn et 
a1 (1990). The only difference is that the method detailed here in section 2 shows 
that symmetry considerations directly determine which overlaps will contribute to a 
particular term in the reduction factors. Thus within the approximations contained 
within the symmetry-adapted states [ Y,(l, m, n)), we obtain as before explicit values 
for RE, RT,  and RTi  in the form of oscillator sums. (Note that R A ,  is zero from section 
2.5.) From Dunn et a1 (1990), these give 

R E  = -XGo/6 

R T ,  = -XGl/9 (4.1) 
R T 2  = -XG2/9 

where 

X = 16Sf/3(3 + SE). (4.2) 

S, = exp[- 9 (KT/hoT)'] (4.3) 

KT = VT(3h/8mwT)'i2. (4.4) 

G1 = gl + g2 + 4g3 + g4 + 4gs 
G2 =g6 (4.5) 

S, is the overlap of the ground oscillator states in two wells given by 

where 

The parameters Go, G I  and C2 are given by (Dunn er a1 1990) 

Gu 
where the factors g, to g, are sums equivalent to (3.21) for T @ e .  They are given 
explicitly by Dunn ef aI (1990). 

Calculations for the second-order spin-orbit coupling parameters for the 
T@ (e + t2) system are currently in progress and will be reported later (Hallam el al 
1991). However, it  is clear that the general method of section 2 assists in an efficient 
extraction of the required results. 

6(g7 + gs + 489) 

5 .  Discussion 

A general method for calculating second-order vibronic reduction factors has been 
derived for any type of system coupled to  symmetric vibrations of the surroundings 
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for any type of perturbation. The results were obtained from symmetry considerations 
only and they are thus entirely general. They also include calculations of cross terms 
(i.e. ri # rA) which are more difficult to calculate in specific models. All types of JT 
system (e.g. E .@e  and T@t,)  are included in  the general formalism. However, 
differences between the results when the orbital state changes (e.g. from E to TI) or 
when the oscillator mode changes (e.g. from e to t2) are not displayed explicitly in the 
results. Instead. such changes are implicit in the construction of the vibronic states 
used in the analysis. This illustrates very clearly the role of the vibronic coupling which 
links together inextricably the orbital motion with the vibrational modes. 

To illustrate the method, the problem of T @ e was considered in detail in section 
3.  The second-order reduction factors were calculated analytically using the trans- 
formation approach of Dunn and Bates (1989a, b). The results were in exact agreement 
with the well known results of Ham (1965). In section 4. the same procedure was 
adopted for the T @  t 2  system. Here, good agreement with the analytical calculations 
of O'Brien (1990) was obtained even though the excited states were not completely 
orthogonal to each other or to the ground states. 
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